

DEPARTMENT OF COMPUTER SYSTEM ENGINEERING Digital Integrated Circuits - ENCS333

Dr. Khader Mohammad Lecture #1 Introduction

Integrated-Circuit Devices and Modeling

OFFICE HOURS -SCHEDULE

D. Khader Mohammad Schedule

																			_
Day	8	1/2	9	1/2	10	1/2	11:15	11:25	12	1⁄2	13	1⁄2	14	1/2	15	1/2	16	1/2	1
Monday	O. H.			ENCS234/Bamieh 105							ENCS313/Masri407								
Tuesday		Eľ	NCS333/Mas	ri 108		0.	Н	ENCS333/Masri108					_						
Wednesday		0	. H.		ENC	S234/Masri	404								ENCS3:	13/Masri407			
Thursday	ENCS333/Masri108			О. Н			ENCS333/Masri108												

Assessment Policy						
Assessment Type	Expected Due Date	Weight				
Short Exams//Quizzes	TBD	15%				
Midterm Exam	TBD	30%				
Projects/Assignments	TBD	20%				
Final Exam	TBD	35%				

Course content

	Course topics and Schedule	
	Subject	
1	Introduction to Digital Integrated Circuits Design	
2	Semiconductor material: pn-junction, NMOS, PMOS	
3	IC Manufacturing and Design Metrics CMOS	
4	Transistor Devices and Logic Design The CMOS inverter	
5	Combinational logic structures	
6	Sequential logic gates; Latches and Flip-Flops	
7	Layout of an Inverter and basic gates	
8	Parasitic Capacitance Estimation	
9	Device modeling parameterization from I-V curves.	
	Short Test	
10	Arithmetic building blocks	
11	Interconnect: R, L and C - Wire modeling	
12	Timing	
	Power dissipation;	
13	SPICE Simulation Techniques (Project)	
14	Memories and array structures	
	Midterm	
15	Clock Distribution	
16	Supply and Threshold Voltage Scaling	
17	Reliability and IC qualification process	
18	Advanced Voltage Scaling Techniques	
19	Power Reduction Through Switching Activity Reduction	
20	CAD tools and algorithms	3

Integrated circuits (ICs)

- Integrated circuits (ICs) are a keystone of modern electronics
- IC is a collection of electronic components resistors, transistors, capacitors
- All stuffed into a tiny chip, and connected together to achieve a common goal
- Inside the IC : "The real "meat" to an IC is a complex layering of semiconductor wafers, copper, and other materials, which interconnect to form transistors, resistors or other components in a circuit."
- IC Packages : The package is what encapsulates the integrated circuit die and splays it out into a device we can more easily connect to.

Digital Chips & Integrated Circuits)

- Chips are used everywhere:
 - Computers
 - Cellular phones
 - iPADs
 - iPhones
 - Gaming systems
 - DVD players, TVs
 - Watches
 - Cars
 - Medical devices
 - Pacemakers and coffee pots
 - Space stations
 - Greeting cards
 - . . .

Basic Element

CMOS Transistor is a switch

Smallest element in IC

Intel 8486

Technology Evolution: Intel CPU Chips

Technology Scaling: Moore's Law

Transistor Counts

An estimate of the maximum number of transistors per chip over time.

The Future is Full of Opportunity

ISSCC2016-01_Visuals.pdf

80x86 Evolution

Wafer and Die

- CMOS ICs are fabricated on circular slices of silicon called wafers.
 - Wafer contains various identical dies.

Chip Packages

Die and Package

Packaging of Real IC

Chip Packaging

- Bonding wires connect the package to the chip.
- Pads are arranged in a frame around the chip.

Chip, PCB

Printed circuit board (PCB)

Design Abstraction Levels

silicon region under the gate electrode when in the "on" state sides of a vertical fin structure, providing "fully depleted" operation

Process technology Intel Technology Roadmap

The MOS transistor

• Physical structure:

The MOS transistor the different modes of operation

Vgs > Vt ; Vds=0V

CMOS

Capacitance of the MOS Transistor

dependence (not simple caps)

P1262 Line Capacitance Calculation

Ctotal = Ca1 + Ca2 + 2*Cll + 2*Cf + 2*Cs

Layout

Transistor defined as poly over diffusion

Layout vs. Schematic

Microwind

Challenges

- Ultra-high speed design
- Interconnect
- Noise, Crosstalk
- Reliability, Manufacturability
- Power Dissipation
- Clock distribution.

- Time-to-Market
- Millions of Gates
- High-Level Abstraction
- Reuse & IP: Portability
- Predictability
- etc.

Challenges

Power

Moore's Law - Logic Density/Area

Complexity outpaces design productivity

Suggested Reading

- What is a Circuit
- Polarity
- Semiconductor
- <u>Resistors</u>
- Diodes
- <u>Capacitors</u>
- Transistors